New Estimate for the Numerical Radius of a given Matrix and Bounds for the Zeros of Polynomials

نویسنده

  • MOHAMMAD AL-HAWARI
چکیده

In this paper we find new estimate for the numerical radius of a given matrix, and we prove that, this estimate is better than any estimate for the numerical radius. We present also new bounds for the zero of polynomials by using new estimate for the numerical radius of a companion matrix of a given polynomial and matrix inequalities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates for the Numerical Radius and the Spectral Radius of the Frobenius Companion Matrix and Bounds for the Zeros of Polynomials

We apply numerical radius and spectral radius estimates to the Frobenius companion matrices of monic polynomials to derive new bounds for their zeros and give different proofs of some known bounds.

متن کامل

On Numerical Radius of a Matrix and Estimation of Bounds for Zeros of a Polynomial

We obtain inequalities involving numerical radius of a matrix A ∈ M n C. Using this result, we find upper bounds for zeros of a given polynomial. We also give a method to estimate the spectral radius of a given matrix A ∈ M n C up to the desired degree of accuracy.

متن کامل

Further inequalities for operator space numerical radius on 2*2 operator ‎matrices

‎We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$‎, ‎when $X$ is a numerical radius operator space‎. ‎These inequalities contain some upper and lower bounds for operator space numerical radius.

متن کامل

Using Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions

Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...

متن کامل

Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients

In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009